Developing slow-release persulfate candles to treat BTEX contaminated groundwater.

نویسندگان

  • Ann Kambhu
  • Steve Comfort
  • Chanat Chokejaroenrat
  • Chainarong Sakulthaew
چکیده

The development of slow-release chemical oxidants for sub-surface remediation is a relatively new technology. Our objective was to develop slow-release persulfate-paraffin candles to treat BTEX-contaminated groundwater. Laboratory-scale candles were prepared by heating and mixing Na(2)S(2)O(8) with paraffin in a 2.25 to 1 ratio (w/w), and then pouring the heated mixture into circular molds that were 2.38 cm long and either 0.71 or 1.27 cm in diameter. Activator candles were prepared with FeSO(4) or zerovalent iron (ZVI) and wax. By treating benzoic acid and BTEX compounds with slow-release persulfate and ZVI candles, we observed rapid transformation of all contaminants. By using (14)C-labeled benzoic acid and benzene, we also confirmed mineralization (conversion to CO2) upon exposure to the candles. As the candles aged and were repeatedly exposed to fresh solutions, contaminant transformation rates slowed and removal rates became more linear (zero-order); this change in transformation kinetics mimicked the observed dissolution rates of the candles. By stacking persulfate and ZVI candles on top of each other in a saturated sand tank (14×14×2.5 cm) and spatially sampling around the candles with time, the dissolution patterns of the candles and zone of influence were determined. Results showed that as the candles dissolved and persulfate and iron diffused out into the sand matrix, benzoic acid or benzene concentrations (C(o)=1 mM) decreased by >90% within 7 d. These results support the use of slow-release persulfate and ZVI candles as a means of treating BTEX compounds in contaminated groundwater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remediating 1,4-dioxane-contaminated water with slow-release persulfate and zerovalent iron.

1,4-dioxane is an emerging contaminant that was used as a corrosion inhibitor with chlorinated solvents. Metal-activated persulfate can degrade dioxane but reaction kinetics have typically been characterized by a rapid decrease during the first 30 min followed by either a slower decrease or no further change (i.e., plateau). Our objective was to identify the factors responsible for this plateau...

متن کامل

Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.

Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity i...

متن کامل

Risk assessment of industrial hydrocarbon release and transport in the vadose zone as it travels to groundwater table: A case study

In this paper, a modeling tool for risk assessment analysis of the movement of hydrocarbon contaminants in the vadose zone and mass flux of contamination release into the groundwater table was developed. Also, advection-diffusion-reaction equations in combination with a three-phase equilibrium state between trapped air, soil humidity, and solid particles of unsaturated soil matrix were numerica...

متن کامل

In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxides and Aquifer Materials

Persulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and m...

متن کامل

In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers.

Techniques for detecting and quantifying anaerobic transformations of benzene, toluene, ethylbenzene, and xylene (BTEX) are needed to assess the feasibility of using in situ bioremediation to treat BTEX-contaminated groundwater aquifers. Deuterated surrogates of toluene (toluene-d8) and xylene (o-xylene-d10) were injected into BTEX-contaminated aquifers during single-well push-pull tests to mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 89 6  شماره 

صفحات  -

تاریخ انتشار 2012